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Abstract 
 
A novel procedure is proposed to identify the functional form of nonlinear restoring forces in the nonlinear oscilla-

tory motion of a conservative system. Although the problem of identification has a unique solution, formulation results 
in a Volterra-type of integral equation of the “first” kind: the solution lacks stability because the integral equation is the 
“first” kind. Thus, the new problem at hand is ill-posed. Inevitable small errors during the identification procedure can 
make the prediction of nonlinear restoring forces useless. We overcome the difficulty by using a stabilization technique 
of Landweber’s regularization in this study. The capability of the proposed procedure is investigated through numerical 
examples. 
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1. Introduction 

Considerable attention has been focused recently 
on the model identification of dynamic systems in 
various branches of science and engineering, espe-
cially in the vibration engineering field. It is crucial to 
obtain the correct modeling of a system’s nonlinear 
restoring forces to achieve an accurate prediction of 
its motion response to various loading environments, 
since different types of nonlinear restoring forces 
produce different physical phenomena of a system. 

A number of identification methods on this topic 
are now available. For example, based on neural net-
works, a procedure to identify the restoring forces of a 
number of typical nonlinear structural systems was 
proposed by Masri et al. [1]. The proposed procedure 
was extended to multi-degree-of-freedom nonlinear 

vibration systems, and was developed for a wider 
applicable range by Chassiakos and Masri [2] and 
Liang et al. [3]. A fuzzy adaptive neural network was 
applied to identify nonlinear characteristics in nonlin-
ear vibration systems (Liang et al. [4]). Based on the 
application of the Hilbert transforms, Spina et al. [5] 
presented a new technique to identify nonlinearity. 
Several other publications focus on challenging issues 
in modeling and identifying nonlinear systems [6-10]. 
However, in most of the methods presented, there are 
a number of unavoidable limitations: a priori infor-
mation about the functional form under investigation 
should be required and the properties of the identified 
system are constrained, and so on. Therefore, a novel 
method needs to be introduced to improve the estima-
tion of dynamic systems.  

In this study, we establish a method that can iden-
tify a nonlinear restoring function of a nonlinear sys-
tem by measuring the dynamic responses. The 
method we propose is new to this field. Remarkable 
improvements are made when compared with the 
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previous studies. 
First, this paper presents a new “nonparametric” 

identification method. So far, the usual “parametric” 
identifications are involved in determining individual 
parameters of pre-assumed models. Thus, the shape 
of the restoring function should be assumed in ad-
vance. However, the method proposed here does not 
require any a priori information on the model for the 
nonlinear restoring function.  

Second, we formulate a new inverse problem for 
the nonparametric identification, which is mathemati-
cally, a nonlinear Volterra integral equation of the 
first kind: the differential equation for the motion 
equation is transformed into a nonlinear integral equa-
tion. The inverse problem has a unique solution, but it 
is ill-posed in the sense of stability. This lack of sta-
bility in the solution leads to erroneous results when 
using any conventional numerical approach [11, 12]. 

Third, we introduce a stabilization technique, 
known as the regularization method, to suppress the 
numerical instability in the solution; Landweber’s 
regularization method is applied to stabilize the nu-
merical solution [13-20]. The L-curve criteria [21], 
combined with the Landweber’s regularization me-
thod, is also introduced to determine a proper choice 
of regularization parameters (or number of iterations) 
for the identification. 

The practicality of the proposed procedure is exam-
ined through numerical experiments. It is found that 
the numerical experiment demonstrates the applica-
bility of the proposed method to identify a functional 
form of nonlinear forces in nonlinear oscillations.  
 

2. Equation of motion 

A nonlinear oscillator of a conservative system is 
considered, in which the governing equation for the 
oscillation is described by the ordinary differential 
equation: 

 
( )my ky h y+ =&&   (1) 

 
Here, m denotes the mass of a particle of an oscilla-

tor, k is a spring coefficient, and h(y) is a nonlinear 
restoring force. Since an integral equation sometimes 
has advantages over a differential equation, we will 
transform Eq. (1) into an integral equation. Let us 
take the initial conditions as in Eq. (2) 

 
(0)y α= , (0)y β=&   (2) 

The solution of the oscillator is then satisfied by the 
nonlinear Volterra integral equation [22, 25]: 
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where y1 (t) and y2 (t) are chosen so that  
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and the Wronskian is defined as 1 2 1 2W y y y y= −& & . 
 

3. Inverse problem and unique solution  

If a displacement ( )y t  is measured during the os-
cillation with the initial conditions in Eq. (2), then an 
integral Eq. (5) for u  can be constructed from Eq. 
(3) because the left-hand side of Eq. (5) is assumed to 
be known, 
 

1 2 0
( ) ( ) ( ) ( , ) ( )

t
y t y t y t K t u dα β τ τ τ− − = ∫   (5) 

 
where u and K are defined, respectively, as  
 

( ) [ ( )]u t h y t=   (6) 

1 2 1 2( ) ( ) ( ) ( )
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τ τ
τ
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=   (7) 

 
It may be important to examine the uniqueness of 

the solution u  to the integral Eq. (5). The integral 
Eq. (5) is linear in u, thus, it is sufficient to prove that 
the removal of the left-hand side in Eq. (5), that is, 

1 2( ) ( ) ( ) 0y t y t y tα β− − =  means that u = 0 in Eq. (5).  
First, assume that 1 2( ) ( ) ( ) 0y t y t y tα β− − = , then 

we have 1 2( ) ( ) ( )y t y t y tα β= + . Since Eq. (1) is 
equivalent to Eq. (5), y  is the solution to not only 
Eq. (1) but also Eq. (5). Thus, it is possible to substi-
tute 1 2( ) ( ) ( )y t y t y tα β= +

 
into Eq. (1) instead of Eq. 

(5). This substitution leads to  
 

0 ( )h y=   (8) 
 
because 1 2( ) ( ) ( )y t y t y tα β= +

 
is a harmonic solu-

tion such that 0my ky+ =&&  due to Eq. (4). The 
equality in Eq. (8) should hold for any y : the initial 
conditions for y  are given as Eq. (2), in which the 
values α and β are arbitrary. Eq. (6) indicates that u 
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(t) is zero because of Eq. (8). Therefore, we have u = 
0. This completes the proof. It can be concluded that 
the integral Eq. (5) has a unique solution.  
 

4. Instability in the solution  

While it is found that the inverse problem for 
nonlinear restoring forces has a unique solution, there 
remains the question of stability in the sense that the 
solution to the inverse problem depends continuously 
on the measured response data.  

Superficially, Eqs. (3) and (5) appear to be the 
same type of integral equations, yet their characteris-
tics for the solution’s stability differ. As a forward 
problem, Eq. (3) is classified as a nonlinear Volterra 
integral equation of the second kind for y. Since sec-
ond-kind integral equations are known to be well-
posed in the sense of stability [11], conventional nu-
merical methods such as a direct numerical discretiza-
tion can be considered as the best strategy to solve Eq. 
(3). In contrast to the forward problem of Eq. (3), an 
inverse formulation of Eq. (5) has the form of a 
Volterra-type of integral equation of the first kind for 
u. The theory of first-kind integral equations illus-
trates that the first-kind integral equation with the 
regular kernel such as K in Eq. (7) is ill-posed in the 
sense of stability [13]. Specifically, we need to deal 
with the first-kind integral equation for u when recov-
ering nonlinear restoring forces in the inverse prob-
lem. This results in numerical instability, which will 
affect the performance of the present inverse problem.  
 

5. Identifying nonlinear restoring 

The identification is an ill-posed inverse problem in 
the sense that its solution lacks stability properties: a 
small amount of noisy data can be considerably am-
plified and may lead to unreliable solutions. To over-
come this problem, we suggest using so-called regu-
larization methods, such as Landweber’s regulariza-
tion, to counter the instability of the problem. In fact, 
a direct discretization of the right-hand side in Eq. (5) 
creates a matrix in which the condition number is 
extremely large, so that the numerical inverse of the 
matrix does not work because the determinant of the 
matrix is nearly zero [16-20].  

For the solution of the integral Eq. (5), we first 
need to determine the left-hand side in Eq. (5), which 
will be denoted by η: 

 

1 2( ) ( ) ( ) ( )t y t y t y tβη α= − −   (9) 
 

If the motion response y is measured, then the η in 
Eq. (9) can be calculated using the initial data α,β in 
Eq. (2) and y1,y2, which satisfies Eq. (4). The solution 
u (t) to the first-kind integral Eq. (5) can be realized 
by the following iteration, known as Landweber’s 
regularization [24]:  
 

1
* *( )m mu I L L u Lηλ λ−= − + , 1, 2...m =   (10) 

 
for a real positive constant λ  such that 

2
20 1/ Lλ< < , where 2⋅  refers to the L2 norm 

[11]. In Eq. (10). The symbol L denotes an operator, 
defined as follows, for an arbitrary function b (t), 

 

0
( , ) ( )

t
Lb K t b dτ τ τ= ∫   (11) 

 
L* represents the adjoint operator of L, and I repre-

sents the identity operator [11, 13]: the kernel K in Eq. 
(11) is the same as in Eq. (7).  

The detailed Landweber’s regularization theory is 
explained [13] as follows. Iterative methods to solve 
equations are popular because they require only rela-
tively simple operations to be performed repeatedly. 
Many iterative methods can be, and are, applied to ill-
posed problems. In this study, we treat only the sim-
plest method, which is Landweber’s regularization 
(10) [13]. It is derived from a second-kind integral 
equation based on Banach’s fixed-point theorem, 
which guarantees the solution’s stability. For conven-
ience, we start with the initial guess of zero function 
without loss of generality [16-20] because Landwe-
ber’s regularization converges to the solution for an 
arbitrary initial guess u0 [13]:  
 

0 0u =   (12) 
 

Finally, the nonlinear force h (y) in Eq. (1) can be 
determined from Eq. (6): u (t) in Eq. (6) is a known 
quantity from the calculation using Eq. (10), while y 
(t) in Eq. (6) is also a known quantity from the meas-
urement, which enables the functional form h (y) to 
be determined (algebraically). 
 

6. Numerical experiment: Duffing’s equation 

In this section, we will demonstrate the applicabil-
ity of the proposed scheme to identify a functional 
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form of nonlinear restoring force through a numerical 
experiment. 

 
6.1 Duffing’s equation 

As a conservative nonlinear oscillation system, 
Duffing’s equation [23] is chosen as a model equation 
in this paper:  
 

3my ky yγ+ =&&   (13) 
 

Comparing Eq. (1) and Eq. (13), h (y) in Eq. (1) 
takes the form of Eq. (14) 
 

3( )h y yγ=   (14) 
 

For convenience, the initial conditions for the pre-
sent numerical experiment are given as in Eq. (15),  

 
(0) 0, (0) 1y y= =&   (15) 

 
and the coefficients m and k of Duffing’s equation are 
normalized as a unit. 

Numerical integration methods of the initial value 
problem in the ordinary differential Eq. (13) such as 
the Runge-Kutta type of integration schemes make it 
possible to obtain the numerical solution of Eq. (13) 
using the initial conditions of Eq. (15). The solutions 
and their phase paths in the phase diagram are de-
picted for γ = -1 and -3 as shown in Figs. 1-4. The 
effects of increasing nonlinearity and closed paths in 
the conservative system are observed. 

Now, we consider the inverse problem for detect-
ing nonlinear restoring forces. If we measure the mo-
tion response data such as the results shown in Figs. 1 
and 2, we can inquire whether it is possible to recover 
the functional form of the nonlinear restoring force in 
Eq. (14) from the measured data. To respond to this 
inquiry, we follow the inverse process as described in 
Section 6. 

 
6.2 Noisy data 

To apply the Landweber’s regularization in Eq. 
(10), measured data of motion response should be 
given. However, in practice, noise always causes 
some deterioration to measured data. The left-hand 
side in Eq. (5) is never exactly known but only up to 
an error of, say, noise level δ >0. In this paper, it is 
assumed that we know 0δ >  and noisy data δη  
with 

  
Fig. 1. Motion response of Duffing’s equation in Eq. (13) 
with initial conditions in Eq. (15) for 1γ = − . 

 
 
 

 
 
Fig. 2. Motion response of Duffing’s equation in Eq. (13) 
with initial conditions in Eq. (15) for 3γ = − . 

 
 
 

 
 
Fig. 3. Phase plane for 1γ = − . 



2942  T. S. Jang et al. / Journal of Mechanical Science and Technology 23 (2009) 2938~2947 
 

 

 
 
Fig. 4. Phase plane for 3γ = − . 

 

2

δη η δ− ≤   (16) 
 
in which 

2
⋅  denotes L2 norm [11]. 

It is now our aim to solve the perturbed equation: 
 

0
( , ) ( )

t
K t u dδη τ τ τ= ∫   (17) 

 
In the present numerical experiments, noisy data is 

randomly generated for the noise level (or error inten-
sity) of δ = 0.0096.  

 
6.3 L-curve criterion: the optimal choice for the num-

ber of iterations 

The number of iterations plays an important role in 
the iterative method of Landweber’s regularization. 
When the number of iterations increases, the iterated 
solutions approach the true solution in the initial stage 
of the iteration, and subsequently, potentially deviate 
far away. In the inverse process, the accuracy of the 
Landweber’s iteration of Eq. (10) is affected by the 
number of iterations. As a result, Landweber’s regu-
larization in Eq. (10) converges to a useless solution 
owing to the amplification of hidden noise. 

The problem now is how to select an appropriate 
number of iterations to obtain the optimal solution. In 
this study, an L-curve criterion [21] is used to obtain 
the appropriate number of iterations. The L-curve is a 
log-log plot of the norm of a regularized solution 
versus the norm of the corresponding residual be-
cause the number of iterations is varied. A log-log 
plot is represented as follows: 
 

( )22
log , logm mLu uδη−   (18) 

 
 
Fig. 5. Graphical illustration of the L-curve for 1γ = − . 

 

 
 
Fig. 6. Graphical illustration of the L-curve for 3γ = − . 

 
This curve exhibits a typical “L” shape, and the op-

timal value for the number of iterations is considered 
the one corresponding to the corner of the curve. 

Figs. 5 and 6 show the L-curve criteria correspond-
ing to the cases of γ = -1 and -3 when δ = 0.0096: λ is 
taken as 0.1 for the iteration (10). The optimal num-
bers of iterations appear to be relatively clear at the 
corners of the L-curves as shown in Figs. 5 and 6: the 
optimal number of iterations m = 104 when γ = -1 and 
the optimal number of iterations m = 104 when γ = -3. 

 
6.4 Polynomial approximation: Functional form of 

nonlinear restoring 

The convergence behavior of solutions in iteration 
(10) is illustrated for different iteration numbers in 
Figs. 7 and 8: the solid lines denote the exact result of 
the graph for u (t) = h [y (t)] in Eq. (6) where h (y) = 
γy3 in Eq. (14). It can be seen that small iterations 
yield a poor approximation. However, when the 
number of iterations exceeds a certain threshold, the 
solution worsens. We choose the value of the corner 
of L-curve as the optimal iteration number [21]. 
Nonlinear restoring forces h (y) are recovered and 
depicted in Figs. 9 and 10, which are fairly accurate 
compared with the exact results of h (y) = γy3 in Eq. 
(14), regardless of the nonlinear parameters of γ = -1 
and -3 in Duffing’s Eq. (13).  

Sometimes it may be convenient to represent 
nonlinear restoring characteristics through polynomi-
als rather than a set of data. For this purpose, we at-
tempt to approximate the nonlinear restoring by a 
polynomial ( )p y  of order n using the recovered  
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(a) 10m =  

 

 
(b) 410m =  

 

 
(c) 610m =  

 
Fig. 7. Convergence behavior of ( )mu t  (dotted lines) in Eq. 
(10) for different iteration numbers m ( 1γ = − ). The solid 
red lines indicate the exact solution of the graph for 

( ) [ ( )]u t h y t=  in Eq. (6), where 3( )h y yγ=  in Eq. (14). 
 

data of nonlinear restoring forces: 
 

2
0 1 2( ) ... n

np y a a y a y a y= ++ + +   (19) 
 

In this study, the least squares method is applied to 
calculate the coefficient of Eq. (19). We minimize the 
residual in Eq. (20) to obtain the coefficients. The 
minimization is attained by differentiations of the 
residual.  
 

2

1

( ( ) ( ))
N

i i
i

h y p y
=

−∑   (20) 

 
Figs. 11 and 12 show polynomial approximations 

of the third order for nonlinear restoring forces. Figs.  

 
(a) 10m =   

 
(b) 410m =   

 
(c) 610m =  

 
Fig. 8. Convergence behavior of ( )mu t  (dotted lines) in Eq. 
(10) for different iteration numbers m ( 3γ = − ). The solid 
red lines indicate the exact solution of the graph for 

( ) [ ( )]u t h y t=  in Eq. (6) where 3( )h y yγ=  in Eq. (14). 
 

13 and 14 show the norm between the recovered 
nonlinear restoring forces ( )h y and the polynomial 
approximation ( )np y with respect to the order n of 
the polynomial. Figs. 13 and 14 show that the norm 
difference is dramatically decreased from the third 
order. Thus, it may be enough to take the third-order 
approximation, at least, for the present numerical 
experiment.  

Finally, we resimulate the motion responses, dis-
placement, and velocity by using the identified results 
of nonlinear restoring forces. A Runge-Kutta integra-
tion scheme is employed for the resimulation. Figs. 
15 and 16 show that the resimulated results are fairly 
accurate compared with that of the exact solution.  

For the explicit representation regarding the com- 
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Fig. 9. Recovered nonlinear restoring force ( )h y  for 

1γ = − . The solid red line denotes the exact nonlinear restor-
ing force and the asterisks denote the recovered nonlinear 
restoring force. 
 

 
 
Fig. 10. Recovered nonlinear restoring force ( )h y  for 

3γ = − . The solid red line denotes the exact nonlinear restor-
ing force and the asterisks denote the recovered nonlinear 
restoring force. 

 

 
 
Fig. 11. Polynomial approximation of the identified func-
tional form of the nonlinear restoring force for 1γ = − . The 
solid red line denotes the exact nonlinear restoring force and 
the dotted line denotes the recovered nonlinear restoring 
force. 

 
 
Fig. 12. Polynomial approximation of the identified func-
tional form of the nonlinear restoring force for 3γ = − . The 
solid red line denotes the exact nonlinear restoring force and 
the dotted line denotes the recovered nonlinear restoring 
force. 
 
 

 
 
Fig. 13. Norm between the recovered nonlinear restoring 
forces ( )yh  and the polynomial approximation ( )nP y  with 
respect to the order of polynomial 1γ = − .  
 

 
 
Fig. 14. Norm between the recovered nonlinear restoring 
forces ( )yh and the polynomial approximation ( )nP y  with 
respect to the order of polynomial 3γ = − . 
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Fig. 15. Resimulated motion responses, displacement, and 
velocity using the identified results of nonlinear restoring 
forces in Fig. 11 for 1γ = − . The solid red line denotes the 
exact nonlinear restoring force and the dotted line denotes the 
resimulated motion responses. 

 

 
 
Fig. 16. Resimulated motion responses, displacement, and 
velocity using the identified results of nonlinear restoring 
forces in Fig. 12 for 3γ = − . The solid red line denotes the 
exact nonlinear restoring force and the dotted line denotes the 
resimulated motion responses. 
 
parison of the accuracy of the proposed method, we 
conduct several numerical experiments with different 
noise levels. The corresponding results are summa-
rized in Table 1, in which δ  denotes the noise level 
and,

 
2num exacth h−  : 2L  norm difference between 

identified nonlinear and exact nonlinear restoring 
forces, 

2resim exacty y− : 2L  norm difference between re-

simulated and exact displacements, 

2resim exacty y−& & : 2L  norm difference between re-

simulated and exact velocities. 

Table 1. Comparison of the level of accuracy. 
 

 δ  
2num exacth h−

2resim exacty y−  
2resim exacty y−& &

0.0096 0.0118 0.0027 0.072 

0.0973 0.4512 0.1633 0.2400 1γ = −

0.02794 1.1023 0.1915 0.4122 

0.0099 0.1109 0.0815 0.1395 

0.0992 0.3483 0.1925 0.2844 3γ = −

0.3257 0.9308 0.2205 0.4869 

 

 
 
Fig. 17. Motion responses of the simple nonlinear pendulum 
in Eq. (21) with initial conditions in Eq. (22).  

 

 
 
Fig. 18. Recovered nonlinear restoring ( )h θ . The solid red 
line denotes the exact nonlinear restoring force and the aster-
isks denote the recovered nonlinear restoring force. 

 
6.5 Other nonlinear equation: Nonlinear pendulum 

Finally, we examine an additional example, which 
has the other nonlinearity of restoring force:  

 
sin 0θ κ θ =+&&   (21) 
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Fig. 19. Resimulated motion responses, displacement, and 
velocity using the identified results of nonlinear restoring 
forces in Fig. 18. The solid red line denotes the exact nonlin-
ear restoring force and the dotted line denotes the resimulated 
motion responses. 

 
Eq. (21) governs a nonlinear large motion of a sim-

ple pendulum, in which θ  and κ  correspond to 
(angular) displacement and constant, respectively. 
From (1) and (21), it is clear that ( ) sinh θ κθ κ θ= − . 
For convenience, we impose the initial conditions:  
 

(0) 1, (0) 0θ θ= =&   (22) 
 
and the coefficient κ  is normalized as a unit. Figs. 
17-19 illustrate the numerical results concerning the 
nonlinear pendulum. The proposed method also gives 
quite accurate results as confirmed by the numerical 
results in Figs. 17-19. 
 

7. Conclusion 

In this paper, an inverse problem is studied to iden-
tify the functional form of nonlinear restoring forces 
in nonlinear oscillatory motion. The problem is 
mathematically involved in solving the first-kind 
integral equation, resulting in a numerical instability 
that will influence the performance of the present 
identification. The identification is an ill-posed in-
verse problem in the sense that its solution lacks sta-
bility properties. This implies that a small amount of 
noisy data can be considerably amplified and may 
lead to unreliable solutions. To deal with measured 
data deteriorated by noise, Landweber’s regulariza-
tion method is introduced to overcome the numerical 
instability. An L-curve criterion, combined with the 
regularization, is applied to the identification process 

to provide an optimal choice of the number of itera-
tions for the regularization. The workability of the 
proposed identification scheme is illustrated with the 
example of the Duffing’s equation. It is shown that 
this identification can be successfully used to deter-
mine the functional form of the nonlinear restoring 
forces in a stable and accurate manner, regardless of γ 
= -1 and -3. To prove the usefulness of the presented 
method, the other kind of nonlinear equation, the 
simple nonlinear pendulum, is also examined. 
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